SMURFEN: A Knowledge Sharing Intrusion Detection Network
نویسندگان
چکیده
The problem of Internet intrusions has become a world-wide security concern. To protect computer users from malicious attacks, Intrusion Detection Systems (IDSs) are designed to monitor network traffic and computer activities in order to alert users about suspicious intrusions. Collaboration among IDSs allows users to benefit from the collective knowledge and information from their collaborators and achieve more accurate intrusion detection. However, most existing collaborative intrusion detection networks rely on the exchange of intrusion data which raises the privacy concern of participants. To overcome this problem, we propose SMURFEN: a knowledge-based intrusion detection network, which provides a platform for IDS users to effectively share their customized detection knowledge in an IDS community. An automatic knowledge propagation mechanism is proposed based on a decentralized two-level optimization problem formulation, leading to a Nash equilibrium solution which is proved to be scalable, incentive compatible, fair, efficient and robust. We evaluate our rule sharing mechanism through simulations and compare our results to existing knowledge sharing methods such as random gossiping and fixed neighbors sharing schemes.
منابع مشابه
A Review of Intrusion Detection Defense Solutions Based on Software Defined Network
Most networks without fixed infrastructure are based on cloud computing face various challenges. In recent years, different methods have been used to distribute software defined network to address these challenges. This technology, while having many capabilities, faces some vulnerabilities in the face of some common threats and destructive factors such as distributed Denial of Service. A review...
متن کاملMoving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملReal-Time intrusion detection alert correlation and attack scenario extraction based on the prerequisite consequence approach
Alert correlation systems attempt to discover the relations among alerts produced by one or more intrusion detection systems to determine the attack scenarios and their main motivations. In this paper a new IDS alert correlation method is proposed that can be used to detect attack scenarios in real-time. The proposed method is based on a causal approach due to the strength of causal methods in ...
متن کاملتولید خودکار الگوهای نفوذ جدید با استفاده از طبقهبندهای تک کلاسی و روشهای یادگیری استقرایی
In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011